본문 바로가기
반응형

COURSERA109

week 3_Deploy End-To-End Machine Learning pipelines 연습 문제 안녕하세요, HELLO 오늘은 DeepLearning.AI, Amazon Web Services에서 진행하는 Practical Data Science Specialization의 두 번째 과정인 "Build, Train, and Deploy ML Pipelines using BERT"을 정리하려고 합니다. "Build, Train, and Deploy ML Pipelines using BERT"의 강의를 통해 'Automate a natural language processing task by building an end-to-end machine learning pipeline'에 대해서 배우게 됩니다. 강의는 아래와 같이 구성되어 있습니다. ~ Feature Engineering and Feature.. 2022. 8. 21.
week 3_Deploy End-to-End Machine Learning pipelines 안녕하세요, HELLO 오늘은 DeepLearning.AI, Amazon Web Services에서 진행하는 Practical Data Science Specialization의 두 번째 과정인 "Build, Train, and Deploy ML Pipelines using BERT"을 정리하려고 합니다. "Build, Train, and Deploy ML Pipelines using BERT"의 강의를 통해 'Automate a natural language processing task by building an end-to-end machine learning pipeline'에 대해서 배우게 됩니다. 강의는 아래와 같이 구성되어 있습니다. ~ Feature Engineering and Feature.. 2022. 8. 21.
week 2_Train a review classifier with BERT and Amazon SageMaker 실습 안녕하세요, HELLO 오늘은 DeepLearning.AI, Amazon Web Services에서 진행하는 Practical Data Science Specialization의 두 번째 과정인 "Build, Train, and Deploy ML Pipelines using BERT"을 정리하려고 합니다. "Build, Train, and Deploy ML Pipelines using BERT"의 강의를 통해 'Automate a natural language processing task by building an end-to-end machine learning pipeline'에 대해서 배우게 됩니다. 강의는 아래와 같이 구성되어 있습니다. ~ Feature Engineering and Feature.. 2022. 8. 21.
week 2_Train, Debug and Profile a Machine Learning Model 연습 문제 안녕하세요, HELLO 오늘은 DeepLearning.AI, Amazon Web Services에서 진행하는 Practical Data Science Specialization의 두 번째 과정인 "Build, Train, and Deploy ML Pipelines using BERT"을 정리하려고 합니다. "Build, Train, and Deploy ML Pipelines using BERT"의 강의를 통해 'Automate a natural language processing task by building an end-to-end machine learning pipeline'에 대해서 배우게 됩니다. 강의는 아래와 같이 구성되어 있습니다. ~ Feature Engineering and Feature.. 2022. 8. 21.
week 2_Train, Debug and Profile a Machine Learning Model 안녕하세요, HELLO 오늘은 DeepLearning.AI, Amazon Web Services에서 진행하는 Practical Data Science Specialization의 두 번째 과정인 "Build, Train, and Deploy ML Pipelines using BERT"을 정리하려고 합니다. "Build, Train, and Deploy ML Pipelines using BERT"의 강의를 통해 'Automate a natural language processing task by building an end-to-end machine learning pipeline'에 대해서 배우게 됩니다. 강의는 아래와 같이 구성되어 있습니다. ~ Feature Engineering and Feature.. 2022. 8. 21.
week 1_Feature transformation with Amazon SageMakerprocessing job and Feature Store 실습 안녕하세요, HELLO 오늘은 DeepLearning.AI, Amazon Web Services에서 진행하는 Practical Data Science Specialization의 두 번째 과정인 "Build, Train, and Deploy ML Pipelines using BERT"을 정리하려고 합니다. "Build, Train, and Deploy ML Pipelines using BERT"의 강의를 통해 'Automate a natural language processing task by building an end-to-end machine learning pipeline'에 대해서 배우게 됩니다. 강의는 아래와 같이 구성되어 있습니다. ~ Feature Engineering and Feature.. 2022. 7. 10.
[COURSERA] Analyze Datasets and Train ML Models using AutoML 자격증 취득 안녕하세요, HELLO COURSERA 온라인 강의는 모든 수업을 이수하고 시험을 통과하면 이에 따라 자격증을 제공하며, 해당 자격증은 linkedin을 통해 업데이트가 가능합니다. 이번에 DeepLearning.AI, Amazon Web Services에서 진행하는 Practical Data Science Specialization의 첫 번째 과정인 "Analyze Datasets and Train ML Models using AutoML" 공부를 마무리했습니다. 강의 목적은 AWS를 활용하여, 'exploratory data analysis (EDA), automated machine learning (AutoML), and text classification algorithms' 등을 적용해보는 것.. 2022. 7. 10.
week 4_Train a text classifier using Amazon SageMaker BlazingText built-in algorithm 실습 안녕하세요, HELLO 오늘은 DeepLearning.AI, Amazon Web Services에서 진행하는 Practical Data Science Specialization의 첫 번째 과정인 "Analyze Datasets and Train ML Models using AutoML"을 정리하려고 합니다. "Analyze Datasets and Train ML Models using AutoML"의 강의를 통해 'exploratory data analysis (EDA), automated machine learning (AutoML), and text classification algorithms에 대해서 배우게 됩니다. 강의는 아래와 같이 구성되어 있습니다. ~ Explore the Use Case .. 2022. 7. 10.
week 4_Built-in algorithms 연습 문제 안녕하세요, HELLO 오늘은 DeepLearning.AI, Amazon Web Services에서 진행하는 Practical Data Science Specialization의 첫 번째 과정인 "Analyze Datasets and Train ML Models using AutoML"을 정리하려고 합니다. "Analyze Datasets and Train ML Models using AutoML"의 강의를 통해 'exploratory data analysis (EDA), automated machine learning (AutoML), and text classification algorithms에 대해서 배우게 됩니다. 강의는 아래와 같이 구성되어 있습니다. ~ Explore the Use Case .. 2022. 7. 10.
반응형